A new maximum relevance-minimum multicollinearity (MRmMC) method for feature selection and ranking

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using covariates for improving the minimum Redundancy Maximum Relevance feature selection method

Maximizing the joint dependency with a minimum size of variables is generally the main task of feature selection. For obtaining a minimal subset, while trying to maximize the joint dependency with the target variable, the redundancy among selected variables must be reduced to a minimum. In this paper, we propose a method based on recently popular minimum Redundancy-Maximum Relevance (mRMR) crit...

متن کامل

N$^3$LARS: Minimum Redundancy Maximum Relevance Feature Selection for Large and High-dimensional Data

We propose a feature selection method that finds non-redundant features from a large and highdimensional data in nonlinear way. Specifically, we propose a nonlinear extension of the non-negative least-angle regression (LARS) called NLARS, where the similarity between input and output is measured through the normalized version of the Hilbert-Schmidt Independence Criterion (HSIC). An advantage of...

متن کامل

mr2PSO: A maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification

This paper presents a hybrid filter–wrapper feature subset selection algorithm based on particle swarm optimization (PSO) for support vector machine (SVM) classification. The filter model is based on the mutual information and is a composite measure of feature relevance and redundancy with respect to the feature subset selected. The wrapper model is a modified discrete PSO algorithm. This hybri...

متن کامل

A New Framework for Distributed Multivariate Feature Selection

Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...

متن کامل

A global-ranking local feature selection method for text categorization

In this paper, we propose a filtering method for feature selection called ALOFT (At Least One FeaTure). The proposed method focuses on specific characteristics of text categorization domain. Also, it ensures that every document in the training set is represented by at least one feature and the number of selected features is determined in a data-driven way. We compare the effectiveness of the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition

سال: 2017

ISSN: 0031-3203

DOI: 10.1016/j.patcog.2017.01.026